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A UNIVERSAL SECOND-PLAYER STRATEGY IN A LINEAR DIFFERENTIAL GAME% 

M.A. ZARKH 

A two-player zero-sum linear differential game with a fixed termination 
time, a convex terminal payoff function, and geometrical constraints on 
player controls is considered. In a previous study, the optimal 
strategy of the second player (the payoff maximizer) who uses minimum 
information on the value function of the game was implemented as a 
piecewise-programmed control, which required specification of certain 
parameters dependent on the initial position /l/. The present study 
proposes a second-player strategy in which the control is synthesized by 
the feedback principle using switching surfaces. The strategy may 
become non-optimal only in case of sliding on the switching surfaces. 
This construction was considered in /2/ for the first player with scalar 
control. 

1. Statement of the prob’lem. Assume that the system dynamics is described by the 
relationships 

y' = R (t) u -I- c (t) v, y E H'", u E P, 11 E v (1.1) 

Here u and v are the vector control parameters of the first and second player, and P 
and Q are convex compact sets. The control process terminates at a given time 6. The 
performance criterion is the value of the terminal function y(y(6)) in state y(6). The first 
player minimizes and the second player maximizes the value of Y (Y (6)). It is required to 
construct an optimal strategy of the second player in the game (1.1). 

Let r be the value function of the game (1.1). Fix the interval T = [t,,,fil, the number 
c* , and the non-increasing function c* (t): c* > C* (t) > min, r (t, z). We assume that the set R .-: 
{(t. z) E T x R": c*: (t) Q r (t, 2) < c*1 contains the region of relevant initial positions. Let 

w, = {(t, 2) E I' x R1': r (t, Z) < c} b e the level set of the function r and w, (t) == {X E R": (t, 

Z) rE M/C) its section at time t. We know that the function I'@, .) is convex for all t< 6. 
Therefore, the sets WC (t) are also convex. We will additionally assume that for all te T, 

c* (t) <> c < c*, the sets w,(t) are bounded and have a non-empty interior. 

2. General specification of the second-player optimal strategy. We will now describe 
the second optimal strategy, whose existence and form were established in /3/ #;~.(++g,, a1so 
Zarkh M.A., A universal second-player optimal strategy in a linear differential game, Sverdlovsk, 
1985. Unpublished manuscript, VINITI 25.10.85, 7438-V85.) Below we will define its generaliz- 
ation. 

We will introduce the necessary notation. For 1 E R” and t,<*, let 

Q (I, t) : {q E Q: Z’C (t) il x max Z’C (t) ‘I, Q E Q) 

The symbol p(., W) denotes the support function. With each position (t,x)E 62 we 
associate the cone 

K (t, z) = {I E R”: 1’~ yx p (I, Wrct, xl (t))} 

Alternatively, the cone K(t,z) can be defined as the conical hull of the subdifferential 
of the function I'(t, .) at the point 2. Note that K(t,z) is a convex closed cone that is 
not zero and does not contain linear subspaces. Let L (t, x) be the collection of extreme 
unit vectors of the cone K (t, 5). An extreme vector /4/ is a vector which cannot be rep- 
resented as the sum of two linearly independent vectors from the cone. 

Define the second-player strategy 

v(t,x)= u ~(z,t),(t,x)~Q; v’=(t,x)=Q,(t,4@Q 
1El.(t, X) 

The strategy V is optimal /3/ for any initial position from Q. The definition of 
the strategy outside D is purely formal and irrelevant. 
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Define a new strategy 

where 

E (t, 5) = (1 = lim I,: 1, E L (1,, .zh), (t, 5) = lim (tk, 51)) 

Let us list the main properties* (*The proofs are given in Zarkh M.A., Second-player 
positional control in a linear differential game, Moscow, 1989. Unpublished manuscript, VINITI 
No.6840-V89.) of the strategy v": the strategy v" is optimal in 61, the inclusion vO(t,s)C: 
V" (t, 5) holds, and the mapping V": (t, 2) -+ Y" (t, 5) is upper semicontinuous by inclusion. 

Note that the strategy v" is many-valued, i.e., the optimal second-player control in 
position (t,z) in general is not unique and may be chosen from the subset v"(t,s) of the 
compactum Q. If V* is some strategy that in each position 0, x) satisfies the inclusion 

v* (t, x) c V" (t, x), then it is optimal in 8. 

3. Switching surfaces. Let us consider some special cases in which the strategy V* is 
constructed in a computationally convenient form using switching surfaces. Assume that the 
set Q c R” is a parallelepiped of the form 

Q = (4 = (~1, . . ., q9) E R”: I qi I < Yiv i = 1, 2, . . ., S} 

Let ei be the i-th unit vector of the space R” and hi (t)= C(t)ei the i-th column of 
the matrix C (t), i = 1, 2, . . ., s. Let 

fl~ (t) = (5 E R”: r (t, .z) = min r (t, z + hhi (t)), h E R’} 

Di+ (t) = (2 E R”: X + hhi (t) @ ni (t), h > 0) 

Di- (t) = {x E R”: x + hh, (t) @ ni (t), h < 0) 

The set IYIi (t) partitions the space R” into two parts: Di’(t) and Di- (1). We call 

nl (t) a switching surface (SS). The following proposition explains the meaning of this term. 
Let 

Gi+ = (4 E Q: qi = vi}, Gi- = {q E Q: qi = _yil 

Proposition 1. Let (t,x)E 8. The conditions 

x E Di+ (t) (2 E Dj- (t)) (3.1) 

I'hi (t) > 0 Vl E E (t, X) (l’hi (t) < 0 VI! E L (t, X)) (3.2) 

v" (t, x) E Gi+ (VO (t, 5) E G,-) (3.3) 

are equivalent. 

Proof. The equivalence of conditions (3.2) and (3.3) follows from the definition of PO 
and the representability of the set Q in the form 

Q = (@ + liei: .$ E G,, --2v, 6 h <O} 

Let us prove the equivalence of (3.1) and (3.2). Assume that (3.1) holds, i.e., z~~i+(t). 
This means that z f ilh, (f) I# II, (t),h > 0. Therefore, minh r (t, z + tilhlr, (t)) = JY (t, I + J.'h‘ (0). where h* < 0, + + 

I’h, (t) ES II, (t). Since I' @, z + h*hi (0) < r (t, 31, we have = i- h*hl (t) E int Wrct,Xj (t). Therefore, 1' (s t 
h*h, (0) < p(L W,.cl,5j (0) for all 1 E R", i#O. For 1 E L (t, 5) we have p (1, wrtl,,) (t))= 2'~. Thus, I' (Z + 

h*h, (t)) < Z’z. Hence Z’hl (t) > U for 2 E L (t, z). 
Conversely, assume that (3.2) holds. Since any non-zero vector of a cone can be rep- 

resented as the sum extreme vectors (Theorem 18.5 /4, p.183/), we have rh,(t)>o for lF- ~(t, 

4, I# 0. Thus I' (z + MI (0) < P (1, Wr(t,.) (t)) for A<0 and 1~ K(t,s),l#O. Therefore, for negative 

A. close to zero we have I + hh, (1)~ int Wrcl,,) (t). Thus, mini f'(t, I + M, (2)) = r (t, z f a% (4) < r (t, 4, 

h* <O. By convexity, the function cp(h)= r&=+?&(t)) increases in the interval (a*,++. 
Therefore, z + ilhi (0 d n, (t) for a > 0. 

From Proposition 1 we see that in the region Di+(t)(Di-(t)) the i-th component of all 
vectors from the set B" (t, I) is vj. (--vi). 

Define the strategy V* (t, x) = (VI* (t, z), . . ., V,* (t, x)) in the form 

VI’&4 = 
* vi, x E Q* (t) 

(__, v) 

I7 1, sE &(t);i = 1,2,...,s 
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Below we state the conditions when V*(t,x)r: V”(t, x), i.e., when V* is an optimal strategy. 
We put 

]Gi*, x ED,+ (t) 
Gi (t, 2) = \ Q, x~rIi(t);i=i,2,....s 

G(t,x)= fj Gi(t,x), Z(t,r)=(iE1,2 ,..., s:x~II~(f)} 
<~=I 

Statement 1. V*(t,z) is the collection of vertices of the face 

Statemelat 2. 
v" (t, s). 

If i(t,z)= 8, then G(t,s) is a one-point set 

Statement 2 is a direct consequence of the definition of V* and 

Condition A. For any vertex g of the face G(t,zz) there is a 
such that zk --*I X, 1 (t. zk) = 0, and G (t, xk) == 6. 

G tt, 2). 

and G (t, I) = v* (t, 5) := 

Proposition 1. 

sequence of points (zk), 

Note that Condition A is satified at all points that do not belong to the SS. In order 
to verify this, it suffices to take the sequence xk = X and apply Statement 2. 

Statement 3. If Condition A is satisfied at the point (t, Z) , then 

v* (t, X) t fT0 (t. .X) (3,4) 

Indeed, by the semicontinuity of fi" and Statement 2, each vertex of the face G (f, .r) 
is contained in the set V" (t, x). But the Collection of all vertices of the face G(t,z) is 
identical with V” (t, I). Therefore, V* (f, 2) C 'i;" (t, sj. 

Condition B. There exists a vector E E E(t,s) such that l'il; (t) = 0 for all iE I (t, z). 

Statement 4. Let I (t, 5) f i" and let Condition B hold. Then the inclusion (3.4) is 
satisfied. 

Indeed, for the vector 1 from Condition B, the value of 1'C (0 11 remains constant on 

G (t7 4. Using the inclusion J'"(t,r)C G(t,.z), which follows from Propostion 1, we obtain 
P(t, z) = G (t, 4. Hence, by Statement 1, we obtain the inclusion (3.4). 

Statements 1-4 lead to the following theorem. 

Theorem 1. If Condition A or Condition B is satisfied in a for each point that belongs 
at least to one SS, then strategy V* is optimal in Q. 

Let us provide a geometric interpretation of Conditions A and B for the case n= s = 2. 
Condition A implies that the sets 11, fQ and & (G are curves that either do not intersect 
in n(t)= {xE R2: (1,X)E 92) (Fig.la) or their points of intersection are isolated (Fig.lb). 
Condition B is satisfied, for instance, ii the boundary of Wrcr. * 1 0) is smooth at the points 
of the sets n, (t), n, (t) (Fig.lc) . 

b 

Fig.1 

Remarks. lo. The practical implementation of the strategy V* is not particularly in- 
fluenced by violation of Conditions A and B. Indeed, strategy I'* produces an optimal result 
if there is no sliding mode on the SS. 

20. The method of SS control can be applied also when the set Q c RS can be represented 
as the sum of segments 

Indeed, rewriting the game Il.11 in the form 

where E is 'a matrix whose rows are the vectors gi, we obtain the previous case. 

4. BxampZe. We will apply the proposed method for constructing the second-player strategy 
to obtain the worst-case wind disturbance in the problem of controlling the longitudinal motion 
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of an aircraft during landing /I, 5-S/. 

The differential equations of the longitudinal motion of the centre of mass of the aircraft 

linearized with respect to the trim motion along the descent trajectory under the assumption 

of constant thrust have the form /7/ 

y' = xi+*, 1 = 1, 3, 5; x1' = -421+ 4U (4.1) 
zs' = -o.o5z, - o.o97r& - 0.0462, + 0.001ri + 0.05za + 0.0972$ 
x4' = 0,241~~ - 0,639~~ + 0.792, + 0.026~~ - 0.2442s + 0.639~s 

x8' = 0.0172, + 0.398x., - 0.501~~ - $526~8 - 0,363.z,- 0.017.~ - 0.398~~ 

The coordinates zl, x3 are the longitudinal and the vertical deviation of the aircraft 

centre of mass (in meters), and zg is the pitching deviation (in degrees). The coordinate z; 

represents the deviation of the elevator (in degrees), and the parameter u is the "specified" 

deviation of the elevator (in degrees). The coordinates 58,~ represent the deviation of the 

longitudinal and the vertical components of the wind velocity (m/see) from their average values. 

The average values are respectively -5 and 0 and are used in calculating the trim trajectory. 

The components 28, x* are determined by the generated values of the parameters 4, vz. We assume 

that 4 and us are the parameters of the second player, whereas u is the parameter of the 

first player. 
Take a fixed time interval T = 10.151. The time 6=15c is interpreted as the time when 

the aircraft crosses the edge of the landing strip. We introduce the payoff function Y(x~.s~. = 
min {e > 0: (x3, ~4) ez CM], where # is a hexagon with the vertices (-3. 1). (0. 1). (3.0). (3, --1),(O, --1), (-3. (I). 
We assume that the first player minimizes and the second player maximizes the payoff value v 

at time 8. 

Since the payoff function depends only on two coordinates of the phase vector, we can pass 

to an equivalent second-order game. The transformation is by a change of variables y(t)= X(+, 

92 (0, where X(8,t) is the matrix formed from the third and fourth rows of the Cauchy funda- 
mental matrix exp 1.4 (6 - t)l. The equivalent second-order game has the form 

y‘ = x (17, t)Ba + X.(6, t)Cv, Y (Yl, Y2) 
11 E P = [-Xl, 201, L' E Q = ((V,, us): 1 VI l Q 10, I v2 I G 5) 

(4.2) 

If V*(f,y) (U* (t. Y)) is the first (second) player optimal strategy in game (4.21, then the 

strategy Y* ft,2) = Y* (t,X (Q,+) (U, (t,z) = U* (t,X(*,t)s)) is optimal in game (4.1). 

Fig.2 Fig.3 

Fix the set C = (0.6, 0.8, 1.0, 1.5, X.6, 4.0, G.o} of values of the parameter c and the step X= 0.05 
between the points t, that partition the time interval T=[O, 151 . For each CEC, the numeri- 
cally constructed sets W,(Q) are convex polyhedra. The value c = 0.6 is the least value for 
which the sets w0 (k) are non-empty for all li= T, 

The strategy v+ (and therefore the strategy E',) is determined by the two curves II,(t), n,(t) 
that depend on t. The optimal value of the component UK at time k is determined by the curve 
II, (t), k c- 1, 2. Fig.2 plots the curves II1 (t) and IT, (0 for 
respectively are the intersections of the curves 

t-=5. (Curves 1 and 2 in Fig.2 
1% (51, n, (5) with the half-plane 

parts of n,(5),Il~(5) that lie below the line yZ=O 
Y,>O; the 

are centrally symmetric about zero to the 
curves I, 2). The optimal value of "1 (VA is -10 (5) to the right of h,(5) (n,(5)) and 10 (-5) 
to the left of II, (5) (n, (5)). 

We introduce two first-player controls. The first is the optimal strategy u*(~,.z)= c” (t, 
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.Y (13. t)r). Numerically it is defined by the switching curves /2/. In the second control, the 
strategy D is defined by the formulas 

These relationship roughly model the "linear" 
/9/. 

law of elevator control used in autopilots 

The step of the discrete scheme for Y,, L', and (7 is taken equal to 0.05. 
Fig.3 plots the variation of the coordinates + Q, 5~ and ~9 for the initial state 

xgg = 5, z,o = 0, j # 3. The value function at the point (0, =a) is 0.6. The solid curves correspond 
to the control IJ, and the broken curves to 0. The payoff are respectively 0.53 and 5.23. 
Thus, with optimal behaviour of the first player (in the couple with strategy 
is close to the value of the game in the initial position. 

V,) the payoff 
If the first player does not follow 

the optimal strategy, the payoff increases sharply. 
Note that there are time intervals from T in which the switching curves H, (0 and H, (t! 

coincide partially or completely and the boundary of the set we (1) at the points of their 
coincidence has a clear break, i.e., Conditions A and 3 cannot be satisfied. Nevertheless, 
the modelling results characterize the strategy vir as optimal in practice. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 
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